|
The evolutionary history of life on Earth traces the processes by which living and fossil organisms have evolved since life appeared on the planet, until the present day. Earth formed about 4.5 Ga (billion years) ago and life appeared on its surface within 1 billion years. The similarities between all present-day organisms indicate the presence of a common ancestor from which all known species have diverged through the process of evolution. More than 99 percent of all species, amounting to over five billion species, that ever lived on Earth are estimated to be extinct. Estimates on the number of Earth's current species range from 10 million to 14 million, of which about 1.2 million have been documented and over 86 percent have not yet been described. ==Outline== The earliest evidence for life on Earth is graphite found to be a biogenic substance in 3.7 billion-year-old metasedimentary rocks discovered in western Greenland and microbial mat fossils found in 3.48 billion-year-old sandstone discovered in Western Australia. More recently, in 2015, "remains of biotic life" were found in 4.1 billion-year-old rocks in Western Australia.〔 Early edition, published online before print.〕 According to one of the researchers, "If life arose relatively quickly on Earth ... then it could be common in the universe."〔 Microbial mats of coexisting bacteria and archaea were the dominant form of life in the early Archean and many of the major steps in early evolution are thought to have taken place within them. The evolution of photosynthesis, around 3.5 Ga, eventually led to a buildup of its waste product, oxygen, in the atmosphere, leading to the great oxygenation event, beginning around 2.4 Ga. The earliest evidence of eukaryotes (complex cells with organelles) dates from 1.85 Ga,〔 and while they may have been present earlier, their diversification accelerated when they started using oxygen in their metabolism. Later, around 1.7 Ga, multicellular organisms began to appear, with differentiated cells performing specialised functions.〔 Sexual reproduction, which involves the fusion of male and female reproductive cells (gametes) to create a zygote in a process called fertilization is, in contrast to asexual reproduction, the primary method of reproduction for the vast majority of macroscopic organisms, including almost all eukaryotes (which includes animals and plants). However the origin and evolution of sexual reproduction remain a puzzle for biologists though it did evolve from a common ancestor that was a single celled eukaryotic species.〔 * *〕 Bilateria, animals with a front and a back, appeared by 555 Ma (million years ago). The earliest land plants date back to around 450 Ma, although evidence suggests that microorganisms formed the earliest terrestrial ecosystems, at least 2.9 Ga. Microorganisms are thought to have paved the way for the inception of land plants in the Phanerozoic. Land plants were so successful that they are thought to have contributed to the Late Devonian extinction event.〔 Ediacara biota appear during the Ediacaran period, while vertebrates, along with most other modern phyla originated about during the Cambrian explosion. During the Permian period, synapsids, including the ancestors of mammals, dominated the land, but most of this group became extinct in the Permian–Triassic extinction event . During the recovery from this catastrophe, archosaurs became the most abundant land vertebrates; one archosaur group, the dinosaurs, dominated the Jurassic and Cretaceous periods. After the Cretaceous–Paleogene extinction event killed off the non-avian dinosaurs, mammals increased rapidly in size and diversity. Such mass extinctions may have accelerated evolution by providing opportunities for new groups of organisms to diversify. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「evolutionary history of life」の詳細全文を読む スポンサード リンク
|